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Entropy production of diffusion in spatially periodic deterministic systems
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This paper presents ab initio derivation of the expression given by irreversible thermodynamics for the
rate of entropy production for different classes of diffusive processes. The first class is Lorentz gases, where
noninteracting particles move on a spatially periodic lattice, and collide elastically with fixed scatterers. The
second class is periodic systems, whidngarticles interact with each other, and one of them is a tracer particle
that diffuses among the cells of the lattice. We assume that, in either case, the dynamics of the system are
deterministic and hyperbolic, with positive Lyapunov exponents. This work extends methods originally devel-
oped for a chaotic two-dimensional model of diffusion, the multi-baker map, to higher-dimensional,
continuous-time dynamical systems appropriate for systems with one or more moving particles. Here we
express the rate of entropy production in terms of hydrodynamic measures that are determined by the fractal
properties of microscopic hydrodynamic modes that describe the slowest decay of the system to an equilibrium
state.
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[. INTRODUCTION we used the fact that an initial nonequilibrium distribution
function, in the multi-baker “phase space,” rapidly develops
In 1902, Gibbs described a mechanism by which the ena fractal structure due to the chaotic nature of the dynamics.
tropy could increase toward its equilibrium value in me- This structure is such that variations of the distribution func-
chanical systems that obey Newton’s equatiphk Gibbs’  tion on arbitrarily fine scales develop as the system evolves
mechanism is based on the assumption that the microscopiic time. The final stages of the approach to equilibrium are
dynamics is mixing. The mixing would allow coarse-grainedthen controlled by the decay of fractal, microscopic hydro-
probabilities to reach their equilibrium values after a longdynamic modes of the system, in this case diffusive modes,
time, a result that has taken on rigorous meaning in light ofvhich decay with time as exp({Dk’), wherek is a wave
the modern definition of mixing2]. The second ingredient number characterizing a particular mode associated with a
of Gibbs’ mechanism is the assumption that the entropy of anacroscopic density variation over a distance of otde,
physical system should be defined as a quantity that is now is the diffusion coefficient, antis the time. For the multi-
referred to as the coarse-grained entropy. The use of thigaker system it is possible to express the rate of entropy
coarse-grained entropy could be justified by the fact that, iproduction in this final stage in terms of measures of sets that
the entropy should be given according to Boltzmann by theare determined by the nonequilibrium phase-space distribu-
logarithm of the number of complexities of a system, then ittion in the set, in particular, by the values of the fractal
can only be defined by introducing cells of nonvanishing sizenydrodynamic modes in the set.
in systems described by continuous coording8ds In this paper we show that it is possible to apply the same
The aim of the present paper is to apply the program setnethods to calculate the rate of entropy production for dif-
up by Gibbs to hyperbolic, deterministic dynamical systemdusive flows in periodic Lorentz gases and for tracer diffu-
sustaining a transport process of diffusion. We assume thation in periodic, interacting{-particle systems as long as the
the systems obey Liouville’s theorem, namely, that phasenicroscopic dynamics is deterministic, mixing, and chaotic.
space volumes are preserved by the dynamics, which is @ur method is based on the explicit construction of the mi-
major assumption used by Gibbs. Specifically, the systemesroscopic fractal hydrodynamic modes of diffusion, which
we consider are either periodic Lorentz gases, in which moveharacterize the long-time relaxation of the system towards
ing particles diffuse through a lattice interacting only with thermodynamic equilibrium. Our main result is that we ob-
fixed scatterers, or are periodic repetitions of interactingain by this method exactly the expression for the rate of
N-particle systems such that a tagged particle is followed aentropy production as given by irreversible thermodynamics
it undergoes diffusion among the unit cells. The present worlfor these systemg9]. The source of this agreement can be
is an extension to continuous time, and interacting systemsraced to the role played by the fractal hydrodynamic modes,
of previous works[4—8] concerned with the multi-baker both for requiring a coarse graining of the phase space to
map as a chaotic model of diffusion. In the previous work,properly incorporate the effects of their fractal properties on
entropy production in the system, as well as for describing
the slowest decay of the system as it relaxes towards equi-
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provided in Sec. Il. Then the nonequilibrium distribution is and finite for high enough enerdg1]. Here, too, the phase
defined in Sec. Ill. Once the distribution function has beerspace has three dimensions and is the union of the constant
constructed, we can identify the microscopic hydrodynamicenergy surfaces for each cell of the lattice.

modes of diffusion, and they are then constructed in Sec. IV.
Here we use the properties of these modes to introduce the
notion of a hydrodynamic measure of a set in phase space, This Lorentz gas is the direct generalization of the two-
and we also identify the sets that are used in the coarsdimensional one. The spatial coordinates vary over the space
graining of the phase space. These sets are not arbitrary, bwith the exclusion of the volume occupied by the spheres:

2. The three-dimensional Lorentz gas

must have some specific properties in order to be useful fof c 9 with dim Q=3. The velocity coordinates form an-

the calculation of the rate of entropy production, which is

carried out in Sec. V. In Sec. VI we conclude with a discus-

sion of the method and results obtained here, and with a
outline of directions for future work.

Il. SPATIALLY PERIODIC SYSTEMS

A. The phase space

other three-dimensional vectore R3. In each energy shell,

\éve can reduce the coordinates to the three positions
r=(x,y,z)e @ and the two velocity spherical angles

0e[0,7] and ¢ €[0,27[. The position space decomposes
into a lattice of elementary cells containing one or several
disks: Q=Uj_T'C. The elementary cell of the phase space
has thus the coordinateé=(x,y,z,c0s6,90) e M=C®[ — 1,

We consider a deterministic dynamical system of phasej' 1]®[0,2x=[, where, again( is the elementary cell of the

space dimensioM, which is spatially periodic in the form of
a d-dimensional latticeC. We will label the positions of the

periodic cellsM on the lattice by the vectdre £, and the
phase-space coordinates within an elementary cellXby
e M. The lattice £ is isomorphic toZ". The total phase
space of the system is the direct prodidtz £ of dimension

M. The time displacement operator over a time intenyal
acting on points If X), is denoted byb!, which is also called
the flow. On the other hand, the time displacement operato
acting on pointX inside the basic unit cell is denoted .

Examples of such systems are the following.

1. The two-dimensional Lorentz gas

In this system a point particle moves in free flight and
undergoes elastic collisions on hard disks forming a triangu

position space?. In the three-dimensional Lorentz gas, the
phase space has the dimension dii+=5 while the lattice
has the dimensiod=dim £=3. The flow of the hard-disk
Lorentz gas preserves the Lebesgue measur®
=dx dy dz ccosfde. Here, also, we suppose that the hori-
zon is finite in order for the diffusion coefficient to be finite.

3. Diffusion of a tracer in a system on a torus

The molecular dynamics simulation of the diffusion of a
fracer particle moving in a fluid can be performed by consid-
ering a finite number of particles modeling the fluid and the
tracer particle, all of them moving with interactions, in a
domain delimited by periodic boundary conditions. The total
number of particles is equal td. The center of mass can be

taken at rest. The vectdrcan be used to locate the position
of the cell containing the tracer particle as it moves on the

lar lattice. The phase space is defined by the spatial angheckerboard lattice made of infinitely many images of the

velocity coordinatesr(,v) of the moving particle. The spatial

system, which tiles the-dimensional space of the system.

coordinates vary over the plane excluding the area occupietihen the diffusion coefficient of the tracer particle can be

by the disksr e Q with dim Q= 2. The velocity coordinates
form another two-dimensional vectore R2. Energy is con-

computed by adding the appropriate lattice vectof ®ach
time the tracer particle crosses a boundary. The energy and

served during the motion so that each energy shell is prelotal momentum are to be conserved so that hedenotes
served by the dynamics. In each energy shell, we can thufe phase-space coordinates of an elementary cell of the

reduce the coordinates to the two positicﬁns(x,y) e Q and
the velocity anglep e[0,27[. The position space decom-
poses into a triangular lattice of hexagonal elementar

cells, each containing a single disR=U;_,7'C, whereT'

denotes the translation by the lattice vectorandC is the
elementary cell of the position spack The elementary cell
of the phase space thus has the coordinabés
=(X,Y,¢) e M=C®][ 0,27 . In the two-dimensional Lorentz
gas, the phase space has the dimension dits= 3 while the
lattice has the dimensiod=dim £=2. The flow of the
hard-disk Lorentz gas preserves the Lebesgue meabxire
=dx dy dp. We notice that the horizon of the hard-disk Lor-
entz gas must be finite in order for the diffusion coefficient to
be finite[10], which we assume in the following.

Similar considerations apply to the Lorentz gas in which a

point particle moves in a periodic lattice of attractive Yukawa
potentials. In this system the diffusion coefficient is positive

phase space, which is of dimensidvi=dim M=2dN
—2d—1 after elimination of thel degrees of freedom of the

y:enter of mass, while the lattice is of dimensidadim £

=2 or 3.

In summary, we will denote by the coordinates on an
energy-momentum shell of a microcanonical ensemble for
the periodic system. We suppose that the flbivpreserves
the Lebesgue measuBX. Moreover, we assume that the
diffusion coefficient of the system is finite, the mean drift
vanishes, and the microscopic dynamics is chaotic and mix-

ing. In the sequei will denote the lattice position vector and
T will denote the translation operator on the lattice. Subsets
of the unit cell M will be denoted by capital roman letters.
The notationA will be used for a set belonging to the el-

ementary phase-space cell at the origin0 of the lattice.
The notationAj=7"A will be used when we want to refer to
a set in a specific lattice cell at positidn
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B. Lattice Fourier transforms
We will also need to define lattice Fourier transforms
[12]. We will need the preliminary result.
Definition 1. Consider a functiorlG(r,X), which is a
function of the lattice coordinate, and the unit cell coordi-
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v(A))= JA)preqv 4
[

and the nonequilibrium measurg(A;), of the same set is
defined by

nate X. This function can then be expressed in terms of a

lattice Fourier transform as

S 1 L o
G(I,X)=—j dke®*'G(k,X), (1)
1B
where B denotes the first Brillouin zone of the reciprocal

lattice, | B| is its volume, ands is the lattice Fourier trans-
form of G.
It is important to note the following.

Lemma 1If G is only a function of the lattice vectdr,
thenG does not depend upon the unit cell coordindtéut
only uponIZ.

IIl. THE NONEQUILIBRIUM DISTRIBUTION

(A= fAAprU X O)=v(A)+du(AD, (5
|
where

Su(A7) = fAAprecR( LX) ®)
|
We will simplify matters a bit by assuming that the initial
deviation from equilibriumR(I’,X,0) depends only upon the
cell I, but not on the initial phask of the system within the
cell. In this case the Fourier transforﬁ(lz,x) does not de-
pend uponX either, and will henceforth be denoted By.

The time-dependent distribution functigrl’, X,t) is the
solution of Liouville’s equation and is given by

We consider a periodic deterministic dynamical system

with a finite diffusion coefficient.

The nonequilibrium measure

p(I,X,H)=ped 1+R(T,X,1)],

=peq{ 1+ %f dkFgelHeTiIXon - (7)

We now construct the statistical ensemble that we will use B

for the rest of this paper. We assume that the coordinates of  _

the ensemble are distributed on the lattice in such a way thatereL denotes the projection on the lattice coordinate, thus
the distribution can be described by an initial ensemble denk[® ~(I,X,0)] is the lattice vector of the cell in which a

sity p(I,X,0), wherep denotes the number of systems permoving particle would be located at timet if it were in cell
unit phase-space volume. We take this density to be close to at time t=0 with phaseX. We can express the time-
that of total equilibrium and write it in the form dependent deviation from total equilibrium in the form
p(1,X,00=ped 1+R(T,X,0], (2) . S T
ec[ R(I'X’t):Ef dkFEelk~[|+d(X,t)]’ (8)
B
where the equilibrium distributiop, is, for Lorentz gases,

uniform with respect to the cells, and with respect to the \,here thehackwarddisplacement of the lattice vectbrover
phase variableX in agreement with the assumption that the ; time intervalt is defined by

Lebesgue measui@X is preserved by the flowb!. For the
case of tracer diffusionge is the equilibrium microcanoni-
cal distribution for theN particles in a cell on the lattice. The
initial deviation from equilibrium in the cell located atis
denoted byR(r,X,O), which we assume to be Lebesgue in-
tegrable when weighted with the equilibrium distribution.
Using the lattice Fourier transform, E(l), we can express
this deviation in the form

d(X,t)=L[D YT, X,00]—1. 9)
We will make heavy use of the fact thé(x,t) depends
upon the time interval{t,0) and upon the phase poiXt at

the initial time, but not upon the initial cell In other words,
the periodicity of the lattice and the dynamics produce a

“winding number” a(X,t) that does not depend upon the
cell in which the trajectory is located at the initial time. Here
we remark that the long time limit of the displacement vector

&(X,t) may be a wildly varying function of the phase coor-
dinate X. Thus, we expect that the decaying modes of the
time-dependent distributiof¥) are singular functions of the
phase coordinates.

We define the time-dependent density of the tracer par-
ticle by integrating the phase-space density over the coordi-
natesX of an elementary phase space cell of the latfti®:

R(FXO):if dke R(K,X) 3)
Y |B| J 5 o

The phase-space densi) leads us to the definition of the
nonequilibrium measure of a s&f belonging to the phase-

space cell7' M corresponding to the lattice vectbr
Definition 2.The equilibrium measure(Aj) of a setA is
defined by
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. R Accordingly, the tracer density can be written as
n(l,t)EfMpr(l,X.tFm(Mr)- (10)

n(i,t)=v(M)

1 R e
_ , , 1+—J dkFpe* ! C(k,t) eS|, (16)
Using Eq.(8), we obtain the density as 1Bl )5

Notice thatn(l,t) obeys a form of the diffusion equation
appropriate for our lattice system, given by

- i
n(l,t)=wv(M) 1+®f dkFie'!
B >

an(l,t)  w(M)
at 18l Js

dXp eilZﬁ(x,t) Wy o
fM - (12) =—D%J dkF k2 ek ek t) et - - -
B

X .
J e a7

We consider times that are long compared to the mean which—in the scaling limit where the size of the unit cell
time between collisions of the moving particles, but that ardecomes small, and for large times and small wave
short compared to the time needed for the system to relax tBumbers—is the diffusion equation
total equilibrium. For such times, we expect the time-

dkFge® T C(K,1) s %+ - .-

dependent deviation from total equilibrium to decay expo- an(Tt) NDﬁzn(r,t) 18
nentially with a rate- s, given by the van Hove relatigri4] g a2 (18)
=i 1| ik-d(X,t)
Sk=tlm? n<e >Ma IV. THE HYDRODYNAMIC MODES
A. The hydrodynamic measures
L dXpeqe' a4 Spatially periodic deviations from total equilibrium char-
=lim=In : (12 acterized by the wave numbér relax exponentially at the
to f dXp rate given by van Hove’s relatiori4]. Here our purpose is
M . to determine the nonequilibrium state corresponding to this

. _ _ ~mode of exponential relaxation. This state can be defined as
which gives the decay rate of a hydrodynamic mode of dif-a measure, which we call a hydrodynamic measure, associ-
fusion of wave numbek. An expansion in powers of the ated with the hydrodynamic mode of diffusion. It is the mi-

wave number gives croscopic analog of the solutions eip(—Dk%) of wave

numberk for the macroscopic diffusion equatidm8).
We introduce the hydrodynamic measures by considering
the deviations from the equilibrium measure for a Aget

s,=— DK%+ 0(k* (13

with diffusion coefficientD. Here we have assumed that the
diffusive motion of the tracer particle is invariant under ~
space inversion so that all the odd powers of the wave num- 5Mt(AF):f dXpeR(1,X,1),
ber vanish. We notice that the existence of the successive Al

terms of the expansion in powers of the wave number de- 1 o
pends on the existence of the super-Burnett and higher dif- =J’ preq—f dkF ek [1rdx]
fusion coefficient§ 15], which has been recently proved for Al 15/ ) 5

the hard-disk periodic Lorentz gas with a finite horiZd6|.

The definition(12) shows that dX peget- 4%
V(./\/l) S kT M
ik-d(x,1) N |B| Bdkae
fMpreqe : ) fMpreq
=C(k,t) e, (14
fMpreq f dxpeqeiﬁ-&(x,t)
A
Lo . L X , (19
where C(k,t) is a function of the wave numbeésc with a ik d(xX t
. - . dXp (X9
subexponential dependence on time, i.e., M e
IimEIn C(IZ t)=0. (15) where we have used the property that the backward displace-
ton b mentd(X,t) is independent of the initial lattice vectbrso
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that the integral over the sé{; is equal to the integral over wil(AD) = v(A)+ Su(AY),
setA of the elementary cell at the origin of the lattice. In the

last line, we have factorized the exponential decay according — (A +i
to Eq. (14), which is independent of se%, from a further v(A) |B|
factor, which depends on sAtbut that is expected to have a

well-defined limit fort—oo, because both its numerator and (26)
denominator are expected to decay exponentially assgxp(

This observation is the motivation for the following defini-  B. Conservation of measure and de Rhamtype equation

tion. - _ ! _ Since the time evolution is a measure-preserving Liou-
Definition 3 The hydrodynamic measurg:(A,t) is de-  yijle operator, the measure of any geremains constant as

fdIZF,;e”Z‘rC(IZ,t)eSktX,;(A,t).
B

fined by the set follows the motion of the system in phase space.
o Therefore, we may express this conservation of measure as
f dxpeqeik-d(x,t)
A Mt (A= u(P7A). (27)
XAAD=1(M) — (20 :
J dXpeg! a0 Here 7 denotes some time interval, adel™ "A is the pre-
M

image of setA under the flow, obtained by following the
We emphasize that the hydrodynamic measures are indepe. g(_:kw_ard evolution of the points @ over a time intervay.
his simple result has some important consequences, among

dent of the cell locatiori. We notice that the hydrodynamic ham a de Rham—type equation for the hydrodynamic mea-
measures are complex measures because of the lattice Fay;

. ires.
ner tran.sform. . . We assume that seis are sufficiently small that all the
One important property of the hydrodynamic measures %

hat th | hvdrod 4 ‘ it cell oints in them will flow through the same sequence of cells
that the total hydrodynamic measure of a unit cell Is constanf e some large time intervaH7=<r<7). In such a case,
in time, as follows from Definition 3. That is,

. . the set of pointsb ~"A are all in thesamecell with location
Lemma 1 For the seA= M, i.e., the phase-space region P

associated with an entire unit cell, the hydrodynamic meagjenoted by|.+d(XA’T)' \.NhiCh IS determingd by the pack-
sure is ward evolution of an arbitrary phase poiXf in setA. Using

Eq. (26), we can express the application of E87) to a set
Xk(M, 1) =v(M). (2) Ajas

Another observation follows.

Lemma 2If we make dZ-expansion of the hydrodynamic
measure of the form

X T
@J dkFge™ 'C(k,t+ 7)et " ISo(At+ 1)
B

i R .

XKAD=v(A) +IK-T(AD+KKGA D+, (22 =@J8dkﬁe‘k'“ HIADIC(K ) eX xip(DTA).

it follows from Eg. (21) that f(/\/l,t)zo and thatg(M,t) (28
=0, etc.

Properties like these have already been used in the varioi&ince this equation must be true for all cdilfor all Fg, and
symmetric, multi-baker modelf4—7]. For a system with for all setsA satisfying the above condition, the only way it

vanishing mean drift(d(X,t)) ,,=0, the two first coeffi- Ccan be satisfied is if the integrands are equal almost every-

cients of thek expansion of the hydrodynamic measures canWhere' Equating the integrands leads to the equation

be expressed as - .d -
P C(K,t+ 7)€% (A, t+ 1) =€ 9XaIC(K,t) xi( D 7AL).

T(A,D)=v(A{d(X,1))A (23 (29)

< _1 3 3 3 3 Since the hydrodynamic measures do not depend on the lat-
9(AD =2 (AKAX,DAXD) 1= (dX, DX, )] tice vector, the pre-imag® ~"A under the full flow over the

(24 lattice can be reduced to the pre-image’A under the flow
with the definition defined with periodic boundary conditions inside the elemen-
tary cell M at[=0.
f dXped ) Now we assume that the dynamics is hyperbolic in order
QY p— (o5 o assert that the hydrodynamic measujg$A.t) reach

asymptotic forms exponentially rapidly, that is, on a time
f AdXPeq scale of the order of the inverse of the positive Lyapunov
exponent for the system. In this case, we can replace the
Thanks to the hydrodynamic measures, Bf) and Eq.  hydrodynamic measures in E@29) by their asymptotic
(14), we finally derive from Eq(19) an expression for the forms, denoted by(A), in the long time limitt—oc. More-
measure of a seéi in cell M;j: over, we have the property that
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Explicit solutions of this equation have been found for
multi-baker mapg8,17,18. For the hard-disk Lorentz gas,
these solutions lead to the cumulative functions constructed - -
in Ref. [19] with one-dimensional setd and in Ref.[12] E g(A))=g(M)=0, (42)
with two-dimensional seté. An alternative form of Eq(31) .
is the identification of the terms that are of the first and second

., . (X s 1) powers of the wave numbek gives us the following two
eX Xk(p"A) =€ N A TN (A). B2 sum rules:

Equation(32) has an expansion in powers of the wave num-
ber k that will be useful in the calculation of the rate of 2
entropy production. In obtaining these expansions we will
make use of thék expansions of theg; functions given in - = - T B -
Eg. (22). The wave number expansion of E@2) leads to zj: [diT(A) +T(Ajd;+d;djp(A)]=2D7r(M)1.
the following equation for terms of ordér (44)

C(IZ t+7) so that Eq.(36) becomes
m C,T =1 (30)
t—oo (k,t) V(M)eSkTZE eik'deIZ(Aj)- (39)
as a consequence of the subexponential behat®rof the :
functionsC(IZ,t). Now, we perform a wave number expansion of both mem-
In the long time limitt— 0, combining Egs(29) and(30) ~ bers of Eq.(39) using Eqs(13) and(22). Using the proper-
we obtain the following. ties
Lemma 3.3 The hydrodynamic measures satisfy a de
Rham-—type equation: 2 V(A)=1(M), (40)
e xi(A) =€ IR Dy 7A). (31)
; T(A)=T(M)=0, (41)

div(A)=0, (43)

C T aTAY LT C g Equation(44) is fundamental for the following development
K- T(A) =k T(A) + v(AJK-d(Xgra,7) B3 pecause it constitutes a sum rule relating the diffusion coef-
ficient to the first coeﬁicientélz(Aj) of the wave number
expansion of the hydrodynamic measures, which is linear in

_ We consider a partitiofA;} of the elementary celM at  the wave numbek. The measure3(A;) have been inter-
I =0 of the phase space into disjoint séts preted elsewhere as the stationary nonequilibrium measures
associated with a gradient of concentration of tracer particles

across the system. In the case of the multi-baker m‘E([Aq,)

is given by the difference of the Takagi function at both ends
of the one-dimensional sefs; [7]. The sum rule(44) thus
relates the diffusion coefficient to the generalization of the
Takagi function for the present system.

C. Partition of phase space and sum rules

We notice that the image#’A; also form a partition of the
elementary cell of phase space:
M=Uacm®A; (39

V. ENTROPY PRODUCTION
We can apply the de Rham-type equat{88) to one set

A; of the partition(34) and sum both members of E(B2) A. Definitions
over all the setg\; € M to obtain In this section we are going to calculate of the rate of
irreversible entropy production over a timeassuming that
ek > Xi(d7A) E ik JXk(A (36)  t>r. For our calculation of the rate of entropy production in
]

a unit cell of the periodic lattice, we use a partition of the
total phase space into the small disjoint s&tslefined in the
paragraph above E@28). We suppose that the partition is

invariant under the spatial translatiofis. The phase-space

with the notation

aan(X¢rA,,T). (37) : i I
] cell located at the lattice vectdr is decomposed by this
Since the setg"A; form a partition of M into disjoint sets, partition as
we infer from Eq.(21) that Mi=Up CM|A] (45)
2 XA = X M) = (M), (39) This partition can be seen as a translationally invariant grid
i

extending over the whole phase space.
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We begin by defining the entropy of the lattice céfiy at ~ where we have used(¢’A;)=v(A;). Next, we expand in
timet as the coarse-grained entropy of this cell with respecpowers of the deviations of the measures from their equilib-

to the partition(45): rium values and find
mi(A)) ; 1 [ d"AD]?
(A =- ApIn = + S M [{A D), ATS(Mp)= 5 —_—
SMIltAD== 2 m(A)In S+ Sed Mil{AD 'S(M0) Zw%w WA
(46) ,
1 oA (s ey
where we have set Boltzmann's constant equal to ukgy, 2 A v(A)) (Sup). (52

=1. The first term on the right-hand side of E¢6) is the
nonequilibrium relative entropy with respect to the equilib-  \We now use the explicit forms for the measu®s,(A)
rium entropy for this partition. The equilibrium entropy is given by the second term on the right-hand side of ©8).

given by After some algebra and the use of the conservation of mea-
A sures, as well as the summation formuld$) and (42), we

SyMiAD=— 3 (AN v( ,)’ a7) find that the right-hand side of E¢52) becomes

A[CM; c L1

AFS(MF):E@

where c is a constant that fixes the absolute value of the
equilibrium entropy. The time variation of the entropy over a
time interval 7 is, of course, only due to the change in the X C(Ky,1)C(Ky,t)

relative entropy, and is defined as the difference

dele' f di,Fy el (kitko)
B )8 2

+5 1 - L TT T

=S(Mi {AD = S(P M [{D7A}). (48)

—T(¢"A)T(H7A)]. (53)

On the other hand, thentropy flowis defined as the differ- pore the summation is over the séis that form a partition
ence between the entropy that enters the 8dif and the ot the unit cell M;. Now we use the identity33) and the

entropy that exits that cell: sum rule(44) to obtain our central result:

ASMD=S- (P T"MH{A}D = S— AMi{A}), »(M)

ATS(M; Z—DT—f dk F~fd|2 Fiks-k
= SM{OAN ~ S(OM{OAY). (49) SMD 7 )T ARk ke
Accordingly, theentropy productiorover a timer, assuming xe Ié'(KleZ)C(izl DC(Ky, 1) el F st
thatt> 7, is defined as N
1 |on(l,t)
T T T =UT— = ) (54)
ATS(MP)=ATS(M[) = AS(M)), Neg| ol

=SMIHAD = SIMI{®AY. (50 gince the tracer density is expressed according to(Eg).
andneg=v(M).
B. Calculation of the entropy production Here we have used the isotropy of the motion in order to
. . . eliminate correlations between the displacements in orthogo-
Equation(50) gives the expression of the entropy produc-

tion as the difference between the entropy with respect to thBal directions. This results in the factiy -k, appearing in
original partition into set#\; and the entropy with respect to the integrand in Eq(54). We have also implied a scaling
a partition into sets that are the imagbsA, of setsA; after limit in order to write the last line of this equation.
time 7. We notice that each sdt"A; belongs to a single unit
cell Mj by a previous assumption. Moreover, since the par- VI. CONCLUSIONS
tition is invariant under translation from cell to cell, the par-
tition {®7A,} is identical to the partitiod ¢"A;} obtained by
using the flow on the torus.

Written out in full, this entropy production is

In this paper, the irreversible entropy production has been
derived from statistical mechanics for a process of diffusion
in periodic, deterministic dynamical systems. The derivation
starts from Gibbs’ coarse-grained entropy, and assumes that

(A) the system is spatially periodic, and that the dynamics satis-
MLA . . A . . L

fies Liouville’s theorem, is chaotic, and mixing. We chose a

Arswr):—ACEM pi(A)In
i |

v(A) coarse-graining partition of phase space that has the property
wi( H7A) that any two trajectories starting in the same set of the par-
+ ,ut((bTA]-)InV(T_)’, (51  tition will remain close together over some specified time
J

STA C MY interval. The central quantities appearing in our derivation
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are the hydrodynamic measures. They define, at the micraemove the restriction to periodic systems, and to consider
scopic level, the hydrodynamic modes of diffusion, whichthe entropy production for a general, isolatégbarticle sys-
are exponentially damped at a rate given by the van Hovéem relaxing to thermal equilibrium. This remains open for
dispersion relation for diffusion. These hydrodynamic meafuture work.

sures describe the approach to the thermodynamic equilib- It is necessary to mention that our approach to entropy
rium under the diffusion process. In deterministic systemsproduction in fluids has been criticized by Rondoni and Co-
the hydrodynamic measures turn out to be singular. Indeedhen in a series of papel&1]. This is not the place to provide

the quantityf(A) is a measure describing a nonequilibrium & detailed response to their criticisms, which we will do in
stationary state corresponding to a gradient of concentratiofeparate publications. However, it is appropriate here to
across the system and, in the multi-baker, the cumulativéhention two issues that are of some importance for our re-
function of this measure is known to be the continuous bugponse to their commentgl) Rondoni and Cohen find it
nondifferentiable Takagi functiofL7]. On the other hand, it troublesome that the time needed for our method to be ap-
has been shown elsewhere that the hydrodynamic measurBlcable depends on the nature of the partition chosen for the
are singular in periodic Lorentz gase®]. It should be em- calculation of the relative entropy and its change with time.
phasized here that the hyperbolicity of the system is used t¥/hile this observation is indeed correct, the consequences
argue that the time-dependent hydrodynamic measures, dar€ not problematic. The essential point to note is that in
fined by Eq.(20), approach their asymptotic forms, with order for a nonzero rate of irreversible entropy production to
variations on arbitrarily fines scales in phase space, on timgesult from our method, we require a partition that is coarser
scales determined by the positive Lyapunov exponentghan the scale of variation of the nonequilibrium distribution
which are very short Compared to the time scales necessaf nction. As we have tried to make Clear, the nonequilibrium
for the relaxation of the density distribution to equilibrium. distribution function develops a fractal structure on a time
Of course, not all systems with macroscopic diffusion and cale set by the magnitude of the largest positive Lyapunov
positive rate of entropy production are chaotic, e.g., wind-€xponent. For the systems described here, this is a time scale
tree models with nonoverlapping tref0]. In such systems that is very short compared to the time scale over which the
the mechanism responsible for positive entropy production igystem relaxes to equilibrium. In fact, this time scale is on
expected to develop on algebraic rather than exponentidhe order of the mean free time between collisions, a scale
time scales, as is the case for chaotic systems. sufficiently short that more traditional methods for comput-
Moreover, if the hydrodynamic measures were regularing the rate of entropy production, based upon the Boltz-
expressior(54) for the entropy production would vanish, as mann equation, for example, also do not apply. Rondoni
shown in the case of the multi-baker map7]. Accordingly, ~and Cohen have also objected to our use of multi-baker maps
the singular character of the hydrodynamic measures playand Lorentz gases as examples of systems to which nonequi-
an essential role in the positiveness of the entropy productiohPrium thermodynamics might be applied. While one might
expected from irreversible thermodynamics. A further pointobject to their view of the utility of simple model systems for
we want to emphasize is that the present derivation naturall{he development of physical intuition, our calculation of the
leads to a positive entropy production in agreement with théate of entropy production for tracer diffusion in &hpar-
second law of thermodynamics. Finally, we point out that ourticle system shows that the method can be applied to much
derivation of the expression given by irreversible thermody-more general systems than multi-baker maps and Lorentz
namics for the rate of entropy production app"es not on|y togases. Our future work will be devoted to Seeing exactly how
Lorentz gases, but also to tracer diffusion taking place in &eneral this method might be.
spatially periodicN particle system, where the mechanism
fo_r tracer diffusion_is provigjet_:l by th_e particles interacting ACKNOWLEDGMENTS
with each other. Without this interaction, the motion of the
tracer particle would be ballistic, and the mean square dis- The authors would like to thank the Max Planck Institute
placement would grow quadratically with time. for Physics of Complex Systems, Dresden, for its hospitality
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proach to the theory of entropy production in the relaxationNational Science Foundation for support under Grant No.
of fluid systems to thermal equilibrium is to generalize thePHY 98-20824; P.G. thanks the National Fund for Scientific
method given here, for tracer diffusion in a periotNgpar-  Research(FNRS Belgium for financial support; and T.G.
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