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Entropy production of diffusion in spatially periodic deterministic systems
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This paper presents anab initio derivation of the expression given by irreversible thermodynamics for the
rate of entropy production for different classes of diffusive processes. The first class is Lorentz gases, where
noninteracting particles move on a spatially periodic lattice, and collide elastically with fixed scatterers. The
second class is periodic systems, whereN particles interact with each other, and one of them is a tracer particle
that diffuses among the cells of the lattice. We assume that, in either case, the dynamics of the system are
deterministic and hyperbolic, with positive Lyapunov exponents. This work extends methods originally devel-
oped for a chaotic two-dimensional model of diffusion, the multi-baker map, to higher-dimensional,
continuous-time dynamical systems appropriate for systems with one or more moving particles. Here we
express the rate of entropy production in terms of hydrodynamic measures that are determined by the fractal
properties of microscopic hydrodynamic modes that describe the slowest decay of the system to an equilibrium
state.
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I. INTRODUCTION

In 1902, Gibbs described a mechanism by which the
tropy could increase toward its equilibrium value in m
chanical systems that obey Newton’s equations@1#. Gibbs’
mechanism is based on the assumption that the microsc
dynamics is mixing. The mixing would allow coarse-grain
probabilities to reach their equilibrium values after a lo
time, a result that has taken on rigorous meaning in ligh
the modern definition of mixing@2#. The second ingredien
of Gibbs’ mechanism is the assumption that the entropy o
physical system should be defined as a quantity that is
referred to as the coarse-grained entropy. The use of
coarse-grained entropy could be justified by the fact tha
the entropy should be given according to Boltzmann by
logarithm of the number of complexities of a system, then
can only be defined by introducing cells of nonvanishing s
in systems described by continuous coordinates@3#.

The aim of the present paper is to apply the program
up by Gibbs to hyperbolic, deterministic dynamical syste
sustaining a transport process of diffusion. We assume
the systems obey Liouville’s theorem, namely, that ph
space volumes are preserved by the dynamics, which
major assumption used by Gibbs. Specifically, the syste
we consider are either periodic Lorentz gases, in which m
ing particles diffuse through a lattice interacting only wi
fixed scatterers, or are periodic repetitions of interact
N-particle systems such that a tagged particle is followed
it undergoes diffusion among the unit cells. The present w
is an extension to continuous time, and interacting syste
of previous works@4–8# concerned with the multi-bake
map as a chaotic model of diffusion. In the previous wo
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we used the fact that an initial nonequilibrium distributio
function, in the multi-baker ‘‘phase space,’’ rapidly develo
a fractal structure due to the chaotic nature of the dynam
This structure is such that variations of the distribution fun
tion on arbitrarily fine scales develop as the system evol
in time. The final stages of the approach to equilibrium a
then controlled by the decay of fractal, microscopic hyd
dynamic modes of the system, in this case diffusive mod
which decay with time as exp(2Dk2t), wherek is a wave
number characterizing a particular mode associated wit
macroscopic density variation over a distance of orderk21,
D is the diffusion coefficient, andt is the time. For the multi-
baker system it is possible to express the rate of entr
production in this final stage in terms of measures of sets
are determined by the nonequilibrium phase-space distr
tion in the set, in particular, by the values of the frac
hydrodynamic modes in the set.

In this paper we show that it is possible to apply the sa
methods to calculate the rate of entropy production for d
fusive flows in periodic Lorentz gases and for tracer diff
sion in periodic, interactingN-particle systems as long as th
microscopic dynamics is deterministic, mixing, and chao
Our method is based on the explicit construction of the m
croscopic fractal hydrodynamic modes of diffusion, whi
characterize the long-time relaxation of the system towa
thermodynamic equilibrium. Our main result is that we o
tain by this method exactly the expression for the rate
entropy production as given by irreversible thermodynam
for these systems@9#. The source of this agreement can
traced to the role played by the fractal hydrodynamic mod
both for requiring a coarse graining of the phase space
properly incorporate the effects of their fractal properties
entropy production in the system, as well as for describ
the slowest decay of the system as it relaxes towards e
librium.

The plan of the paper is the following. The mathematic
methods needed to describe spatially periodic systems
©2002 The American Physical Society10-1
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provided in Sec. II. Then the nonequilibrium distribution
defined in Sec. III. Once the distribution function has be
constructed, we can identify the microscopic hydrodynam
modes of diffusion, and they are then constructed in Sec.
Here we use the properties of these modes to introduce
notion of a hydrodynamic measure of a set in phase sp
and we also identify the sets that are used in the co
graining of the phase space. These sets are not arbitrary
must have some specific properties in order to be usefu
the calculation of the rate of entropy production, which
carried out in Sec. V. In Sec. VI we conclude with a discu
sion of the method and results obtained here, and with
outline of directions for future work.

II. SPATIALLY PERIODIC SYSTEMS

A. The phase space

We consider a deterministic dynamical system of pha
space dimensionM, which is spatially periodic in the form o
a d-dimensional latticeL. We will label the positions of the
periodic cellsM on the lattice by the vectorlWPL, and the
phase-space coordinates within an elementary cell byX
PM. The latticeL is isomorphic toZd. The total phase
space of the system is the direct productM^ L of dimension
M. The time displacement operator over a time intervat,
acting on points (lW,X), is denoted byF t, which is also called
the flow. On the other hand, the time displacement opera
acting on pointsX inside the basic unit cell is denoted byf t.

Examples of such systems are the following.

1. The two-dimensional Lorentz gas

In this system a point particle moves in free flight a
undergoes elastic collisions on hard disks forming a trian
lar lattice. The phase space is defined by the spatial
velocity coordinates (rW,vW ) of the moving particle. The spatia
coordinates vary over the plane excluding the area occu
by the disks:rWPQ with dim Q52. The velocity coordinates
form another two-dimensional vectorvW PR2. Energy is con-
served during the motion so that each energy shell is
served by the dynamics. In each energy shell, we can
reduce the coordinates to the two positionsrW5(x,y)PQ and
the velocity anglewP@0,2p@ . The position space decom
poses into a triangular lattice of hexagonal element
cells, each containing a single disk:Q5ø lWPLT lWC, whereT lW

denotes the translation by the lattice vectorlW, andC is the
elementary cell of the position spaceQ. The elementary cel
of the phase space thus has the coordinatesX
5(x,y,w)PM5C^ @0,2p@ . In the two-dimensional Lorentz
gas, the phase space has the dimension dimM53 while the
lattice has the dimensiond5dim L52. The flow of the
hard-disk Lorentz gas preserves the Lebesgue measuredX
5dx dy dw. We notice that the horizon of the hard-disk Lo
entz gas must be finite in order for the diffusion coefficient
be finite @10#, which we assume in the following.

Similar considerations apply to the Lorentz gas in whic
point particle moves in a periodic lattice of attractive Yukaw
potentials. In this system the diffusion coefficient is positi
02611
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and finite for high enough energy@11#. Here, too, the phase
space has three dimensions and is the union of the con
energy surfaces for each cell of the lattice.

2. The three-dimensional Lorentz gas

This Lorentz gas is the direct generalization of the tw
dimensional one. The spatial coordinates vary over the sp
with the exclusion of the volume occupied by the spher
rWPQ with dim Q53. The velocity coordinates form an
other three-dimensional vectorvW PR3. In each energy shell
we can reduce the coordinates to the three positi
rW5(x,y,z)PQ and the two velocity spherical angle
uP@0,p# and wP@0,2p@ . The position space decompos
into a lattice of elementary cells containing one or seve
disks:Q5ø lWPLT lWC. The elementary cell of the phase spa
has thus the coordinatesX5(x,y,z,cosu,w)PM5C^ @21,
11# ^ @0,2p@ , where, again,C is the elementary cell of the
position spaceQ. In the three-dimensional Lorentz gas, th
phase space has the dimension dimM55 while the lattice
has the dimensiond5dim L53. The flow of the hard-disk
Lorentz gas preserves the Lebesgue measuredX
5dx dy dz dcosu dw. Here, also, we suppose that the ho
zon is finite in order for the diffusion coefficient to be finite

3. Diffusion of a tracer in a system on a torus

The molecular dynamics simulation of the diffusion of
tracer particle moving in a fluid can be performed by cons
ering a finite number of particles modeling the fluid and t
tracer particle, all of them moving with interactions, in
domain delimited by periodic boundary conditions. The to
number of particles is equal toN. The center of mass can b
taken at rest. The vectorlW can be used to locate the positio
of the cell containing the tracer particle as it moves on
checkerboard lattice made of infinitely many images of
system, which tiles thed-dimensional space of the system
Then the diffusion coefficient of the tracer particle can
computed by adding the appropriate lattice vector tolW each
time the tracer particle crosses a boundary. The energy
total momentum are to be conserved so that hereX denotes
the phase-space coordinates of an elementary cell of
phase space, which is of dimensionM5dim M52dN
22d21 after elimination of thed degrees of freedom of the
center of mass, while the lattice is of dimensiond5dim L
52 or 3.

In summary, we will denote byX the coordinates on an
energy-momentum shell of a microcanonical ensemble
the periodic system. We suppose that the flowF t preserves
the Lebesgue measuredX. Moreover, we assume that th
diffusion coefficient of the system is finite, the mean dr
vanishes, and the microscopic dynamics is chaotic and m
ing. In the sequellW will denote the lattice position vector an
T will denote the translation operator on the lattice. Subs
of the unit cellM will be denoted by capital roman letters
The notationA will be used for a set belonging to the e
ementary phase-space cell at the originlW50 of the lattice.
The notationAlW5T lWA will be used when we want to refer t
a set in a specific lattice cell at positionlW.
0-2
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B. Lattice Fourier transforms

We will also need to define lattice Fourier transform
@12#. We will need the preliminary result.

Definition 1. Consider a functionG( lW,X), which is a
function of the lattice coordinatelW, and the unit cell coordi-
nate X. This function can then be expressed in terms o
lattice Fourier transform as

G~ lW,X!5
1

uBu EB
dkW eikW• lWG̃~kW ,X!, ~1!

where B denotes the first Brillouin zone of the reciproc
lattice, uBu is its volume, andG̃ is the lattice Fourier trans
form of G.

It is important to note the following.
Lemma 1.If G is only a function of the lattice vectorlW,

thenG̃ does not depend upon the unit cell coordinateX, but
only uponkW .

III. THE NONEQUILIBRIUM DISTRIBUTION

We consider a periodic deterministic dynamical syst
with a finite diffusion coefficient.

The nonequilibrium measure

We now construct the statistical ensemble that we will u
for the rest of this paper. We assume that the coordinate
the ensemble are distributed on the lattice in such a way
the distribution can be described by an initial ensemble d
sity r( lW,X,0), wherer denotes the number of systems p
unit phase-space volume. We take this density to be clos
that of total equilibrium and write it in the form

r~ lW,X,0!5req@11R~ lW,X,0!#, ~2!

where the equilibrium distributionreq is, for Lorentz gases
uniform with respect to the cellslW, and with respect to the
phase variablesX in agreement with the assumption that t
Lebesgue measuredX is preserved by the flowF t. For the
case of tracer diffusion,req is the equilibrium microcanoni-
cal distribution for theN particles in a cell on the lattice. Th
initial deviation from equilibrium in the cell located atlW is
denoted byR( lW,X,0), which we assume to be Lebesgue
tegrable when weighted with the equilibrium distributio
Using the lattice Fourier transform, Eq.~1!, we can express
this deviation in the form

R~ lW,X,0!5
1

uBu EB
dkW eikW• lWR̃~kW ,X!. ~3!

The phase-space density~2! leads us to the definition of th
nonequilibrium measure of a setAlW belonging to the phase
space cellT lWM corresponding to the lattice vectorlW.

Definition 2.The equilibrium measuren(AlW) of a setAlW is
defined by
02611
a

e
of
at
n-
r
to

-

n~AlW![E
AlW

dXreq, ~4!

and the nonequilibrium measure,m t(AlW), of the same set is
defined by

m t~AlW![E
AlW

dXr~ lW,X,t !5n~AlW!1dm t~AlW!, ~5!

where

dm t~AlW!5E
AlW

dX reqR~ lW,X,t !. ~6!

We will simplify matters a bit by assuming that the initia
deviation from equilibriumR( lW,X,0) depends only upon the
cell lW, but not on the initial phaseX of the system within the
cell. In this case the Fourier transformR̃(kW ,X) does not de-
pend uponX either, and will henceforth be denoted byFkW .

The time-dependent distribution functionr( lW,X,t) is the
solution of Liouville’s equation and is given by

r~ lW,X,t !5req@11R~ lW,X,t !#,

5reqH 11
1

uBu EB
dkW FkW eikW•LW [F2t( lW,X,0)]J . ~7!

HereLW denotes the projection on the lattice coordinate, th
LW @F2t( lW,X,0)# is the lattice vector of the cell in which a
moving particle would be located at time2t if it were in cell
lW at time t50 with phaseX. We can express the time
dependent deviation from total equilibrium in the form

R~ lW,X,t !5
1

uBu EB
dkWFkW eikW•[ lW1dW (X,t)] , ~8!

where thebackwarddisplacement of the lattice vectorlW over
a time intervalt is defined by

dW ~X,t !5LW @F2t~ lW,X,0!#2 lW. ~9!

We will make heavy use of the fact thatdW (X,t) depends
upon the time interval (2t,0) and upon the phase pointX, at
the initial time, but not upon the initial celllW. In other words,
the periodicity of the lattice and the dynamics produce
‘‘winding number’’ dW (X,t) that does not depend upon th
cell in which the trajectory is located at the initial time. He
we remark that the long time limit of the displacement vec
dW (X,t) may be a wildly varying function of the phase coo
dinate X. Thus, we expect that the decaying modes of
time-dependent distribution~7! are singular functions of the
phase coordinates.

We define the time-dependent density of the tracer p
ticle by integrating the phase-space density over the coo
natesX of an elementary phase space cell of the lattice@13#:
0-3
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n~ lW,t ![E
M

dX r~ lW,X,t !5m t~MlW!. ~10!

Using Eq.~8!, we obtain the density as

n~ lW,t !5n~M!F 11
1

uBu EB
dkWFkW eikW• lW

3

E
M

dXreqeikW•dW (X,t)

E
M

dX req
G . ~11!

We consider timest that are long compared to the mea
time between collisions of the moving particles, but that
short compared to the time needed for the system to rela
total equilibrium. For such times, we expect the tim
dependent deviation from total equilibrium to decay exp
nentially with a rate2sk given by the van Hove relation@14#

sk[ lim
t→`

1

t
ln^eikW•dW (X,t)&M ,

5 lim
t→`

1

t
ln

E
M

dXreqeikW•dW (X,t)

E
M

dXreq

, ~12!

which gives the decay rate of a hydrodynamic mode of d
fusion of wave numberkW . An expansion in powers of the
wave number gives

sk52DkW21O~kW4! ~13!

with diffusion coefficientD. Here we have assumed that th
diffusive motion of the tracer particle is invariant und
space inversion so that all the odd powers of the wave n
ber vanish. We notice that the existence of the succes
terms of the expansion in powers of the wave number
pends on the existence of the super-Burnett and higher
fusion coefficients@15#, which has been recently proved fo
the hard-disk periodic Lorentz gas with a finite horizon@16#.

The definition~12! shows that

E
M

dXreqeikW•dW (X,t)

E
M

dXreq

5C~kW ,t ! eskt, ~14!

where C(kW ,t) is a function of the wave numberkW with a
subexponential dependence on time, i.e.,

lim
t→`

1

t
ln C~kW ,t !50. ~15!
02611
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Accordingly, the tracer density can be written as

n~ lW,t !5n~M!F11
1

uBu EB
dkWFkW eikW• lW C~kW ,t ! esktG . ~16!

Notice thatn( lW,t) obeys a form of the diffusion equatio
appropriate for our lattice system, given by

]n~ lW,t !

]t
5

n~M!

uBu E
B
dkWFkW eikW• lW C~kW ,t ! sk eskt1•••

52D
n~M!

uBu E
B
dkWFkW kW 2 eikW• lWC~kW ,t ! eskt1•••,

~17!

which—in the scaling limit where the size of the unit ce
becomes small, and for large times and small wa
numbers—is the diffusion equation

]n~ lW,t !

]t
.D

]2n~ lW,t !

] lW2
. ~18!

IV. THE HYDRODYNAMIC MODES

A. The hydrodynamic measures

Spatially periodic deviations from total equilibrium cha
acterized by the wave numberkW relax exponentially at the
rate given by van Hove’s relation@14#. Here our purpose is
to determine the nonequilibrium state corresponding to
mode of exponential relaxation. This state can be defined
a measure, which we call a hydrodynamic measure, ass
ated with the hydrodynamic mode of diffusion. It is the m
croscopic analog of the solutions exp(ikW•lW2Dk2t) of wave
numberkW for the macroscopic diffusion equation~18!.

We introduce the hydrodynamic measures by conside
the deviations from the equilibrium measure for a setAlW :

dm t~AlW!5E
AlW

dXreqR~ lW,X,t !,

5E
AlW

dXreq

1

uBu EB
dkWFkWe

ikW•[ lW1dW (X,t)]

5
n~M!

uBu E
B
dkWFkWe

ikW• lW
E

M
dX reqe

ikW•dW (X,t)

E
M

dXreq

3

E
A
dXreqe

ikW•dW (X,t)

E
M

dXreqe
ikW•dW (X,t)

, ~19!

where we have used the property that the backward displ
mentdW (X,t) is independent of the initial lattice vectorlW so
0-4
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ENTROPY PRODUCTION OF DIFFUSION IN . . . PHYSICAL REVIEW E66, 026110 ~2002!
that the integral over the setAlW is equal to the integral ove
setA of the elementary cell at the origin of the lattice. In th
last line, we have factorized the exponential decay accord
to Eq. ~14!, which is independent of setA, from a further
factor, which depends on setA but that is expected to have
well-defined limit for t→`, because both its numerator an
denominator are expected to decay exponentially as expskt).
This observation is the motivation for the following defin
tion.

Definition 3. The hydrodynamic measurexkW(A,t) is de-
fined by

xkW~A,t ![n~M!

E
A
dXreqe

ikW•dW (X,t)

E
M

dXreqe
ikW•dW (X,t)

. ~20!

We emphasize that the hydrodynamic measures are inde
dent of the cell locationlW. We notice that the hydrodynami
measures are complex measures because of the lattice
rier transform.

One important property of the hydrodynamic measure
that the total hydrodynamic measure of a unit cell is cons
in time, as follows from Definition 3. That is,

Lemma 1. For the setA5M, i.e., the phase-space regio
associated with an entire unit cell, the hydrodynamic m
sure is

xkW~M,t !5n~M!. ~21!

Another observation follows.
Lemma 2. If we make akW -expansion of the hydrodynami

measure of the form

xkW~A,t !5n~A!1 ikW•TW ~A,t !1kWkW :gJ~A,t !1•••, ~22!

it follows from Eq. ~21! that TW (M,t)50 and thatgJ(M,t)
50, etc.

Properties like these have already been used in the var
symmetric, multi-baker models@4–7#. For a system with
vanishing mean drift̂ dW (X,t)&M50, the two first coeffi-
cients of thekW expansion of the hydrodynamic measures c
be expressed as

TW ~A,t !5n~A!^dW ~X,t !&A ~23!

gJ~A,t !5 1
2 n~A!@^dW ~X,t !dW ~X,t !&M2^dW ~X,t !dW ~X,t !&A#

~24!

with the definition

^ &A[

E
A
dXreq~ !

E
A
dXreq

. ~25!

Thanks to the hydrodynamic measures, Eq.~20! and Eq.
~14!, we finally derive from Eq.~19! an expression for the
measure of a setA in cell MlW :
02611
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m t~AlW!5n~A!1dm t~AlW!,

5n~A!1
1

uBu EB
dkWFkWe

ikW• lWC~kW ,t !esktxkW~A,t !.

~26!

B. Conservation of measure and de Rham–type equation

Since the time evolution is a measure-preserving Lio
ville operator, the measure of any setA remains constant a
the set follows the motion of the system in phase spa
Therefore, we may express this conservation of measure

m t1t~A!5m t~F2tA!. ~27!

Here t denotes some time interval, andF2tA is the pre-
image of setA under the flow, obtained by following the
backward evolution of the points ofA over a time intervalt.
This simple result has some important consequences, am
them a de Rham–type equation for the hydrodynamic m
sures.

We assume that setsA are sufficiently small that all the
points in them will flow through the same sequence of ce
over some large time interval (2T<t<T ). In such a case
the set of pointsF2tA are all in thesamecell with location
denoted bylW1dW (XA ,t), which is determined by the back
ward evolution of an arbitrary phase pointXA in setA. Using
Eq. ~26!, we can express the application of Eq.~27! to a set
AlW as

1

uBu EB
dkWFkWe

ikW• lWC~kW ,t1t!e(t1t)skxkW~A,t1t!

5
1

uBu EB
dkWFkWe

ikW•[ lW1dW (XA ,t)]C~kW ,t !esktxkW~F2tA,t !.

~28!

Since this equation must be true for all cellslW for all FkW , and
for all setsA satisfying the above condition, the only way
can be satisfied is if the integrands are equal almost ev
where. Equating the integrands leads to the equation

C~kW ,t1t!esktxkW~A,t1t!5eikW•dW (XA ,t)C~kW ,t !xkW~F2tA,t !.
~29!

Since the hydrodynamic measures do not depend on the
tice vector, the pre-imageF2tA under the full flow over the
lattice can be reduced to the pre-imagef2tA under the flow
defined with periodic boundary conditions inside the elem
tary cell M at lW50.

Now we assume that the dynamics is hyperbolic in or
to assert that the hydrodynamic measuresxkW(A,t) reach
asymptotic forms exponentially rapidly, that is, on a tim
scale of the order of the inverse of the positive Lyapun
exponent for the system. In this case, we can replace
hydrodynamic measures in Eq.~29! by their asymptotic
forms, denoted byxkW(A), in the long time limitt→`. More-
over, we have the property that
0-5
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lim
t→`

C~kW ,t1t!

C~kW ,t !
51 ~30!

as a consequence of the subexponential behavior~15! of the
functionsC(kW ,t).

In the long time limitt→`, combining Eqs.~29! and~30!
we obtain the following.

Lemma 3.3. The hydrodynamic measures satisfy a
Rham–type equation:

esktxkW~A!5eikW•dW (XA ,t)xkW~f2tA!. ~31!

Explicit solutions of this equation have been found f
multi-baker maps@8,17,18#. For the hard-disk Lorentz gas
these solutions lead to the cumulative functions construc
in Ref. @19# with one-dimensional setsA and in Ref.@12#
with two-dimensional setsA. An alternative form of Eq.~31!
is

esktxkW~ftA!5eikW•dW (XftA ,t)xkW~A!. ~32!

Equation~32! has an expansion in powers of the wave nu
ber kW that will be useful in the calculation of the rate o
entropy production. In obtaining these expansions we w
make use of thekW expansions of thexkW functions given in
Eq. ~22!. The wave number expansion of Eq.~32! leads to
the following equation for terms of orderkW :

kW•TW ~ftA!5kW•TW ~A!1n~A!kW•dW ~XftA ,t!. ~33!

C. Partition of phase space and sum rules

We consider a partition$Aj% of the elementary cellM at
lW50 of the phase space into disjoint setsAj :

øAj ,MAj5M, AiùAj5B,; i , j ,iÞ j . ~34!

We notice that the imagesftAj also form a partition of the
elementary cell of phase space:

M5øAj ,MftAj . ~35!

We can apply the de Rham–type equation~32! to one set
Aj of the partition~34! and sum both members of Eq.~32!
over all the setsAjPM to obtain

eskt(
j

xkW~ftAj !5(
j

eikW•dW jxkW~Aj !, ~36!

with the notation

dW j[dW ~XftAj
,t!. ~37!

Since the setsftAj form a partition ofM into disjoint sets,
we infer from Eq.~21! that

(
j

xkW~ftAj !5xkW~M!5n~M!, ~38!
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so that Eq.~36! becomes

n~M!eskt5(
j

eikW•dW jxkW~Aj !. ~39!

Now, we perform a wave number expansion of both me
bers of Eq.~39! using Eqs.~13! and ~22!. Using the proper-
ties

(
j

n~Aj !5n~M!, ~40!

(
j

TW ~Aj !5TW ~M!50, ~41!

(
j

gJ~Aj !5gJ~M!50, ~42!

the identification of the terms that are of the first and seco
powers of the wave numberkW gives us the following two
sum rules:

(
j

dW jn~Aj !50, ~43!

(
j

@dW jTW ~Aj !1TW ~Aj !dW j1dW jdW jn~Aj !#52 Dtn~M!1J.

~44!

Equation~44! is fundamental for the following developmen
because it constitutes a sum rule relating the diffusion co
ficient to the first coefficientsTW (Aj ) of the wave number
expansion of the hydrodynamic measures, which is linea
the wave numberkW . The measuresTW (Aj ) have been inter-
preted elsewhere as the stationary nonequilibrium meas
associated with a gradient of concentration of tracer partic
across the system. In the case of the multi-baker maps,TW (Aj )
is given by the difference of the Takagi function at both en
of the one-dimensional setsAj @7#. The sum rule~44! thus
relates the diffusion coefficient to the generalization of t
Takagi function for the present system.

V. ENTROPY PRODUCTION

A. Definitions

In this section we are going to calculate of the rate
irreversible entropy production over a timet, assuming that
t@t. For our calculation of the rate of entropy production
a unit cell of the periodic lattice, we use a partition of th
total phase space into the small disjoint setsAj defined in the
paragraph above Eq.~28!. We suppose that the partition i
invariant under the spatial translationsT lW. The phase-space
cell located at the lattice vectorlW is decomposed by this
partition as

MlW5øAj ,MlW
Aj . ~45!

This partition can be seen as a translationally invariant g
extending over the whole phase space.
0-6
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We begin by defining the entropy of the lattice cellMlW at
time t as the coarse-grained entropy of this cell with resp
to the partition~45!:

St~MlW u$Aj%![2 (
Aj ,MlW

m t~Aj !ln
m t~Aj !

n~Aj !
1Seq~MlW u$Aj%!,

~46!

where we have set Boltzmann’s constant equal to unity,kB
51. The first term on the right-hand side of Eq.~46! is the
nonequilibrium relative entropy with respect to the equil
rium entropy for this partition. The equilibrium entropy
given by

Seq~MlW u$Aj%!52 (
Aj ,MlW

n~Aj !ln
n~Aj !

c
, ~47!

where c is a constant that fixes the absolute value of
equilibrium entropy. The time variation of the entropy ove
time intervalt is, of course, only due to the change in t
relative entropy, and is defined as the difference

DtS~MlW![St~MlW $Aj%!2St2t~MlW u$Aj%!,

5St~MlW u$Aj%!2St~FtMlW u$FtAj%!. ~48!

On the other hand, theentropy flowis defined as the differ-
ence between the entropy that enters the cellMlW and the
entropy that exits that cell:

De
tS~MlW![St2t~F2tMlW $Aj%!2St2t~MlW $Aj%!,

5St~MlW $FtAj%!2St~FtMlW $FtAj%!. ~49!

Accordingly, theentropy productionover a timet, assuming
that t@t, is defined as

D i
tS~MlW![DtS~MlW!2De

tS~MlW!,

5St~MlW u$Aj%!2St~MlW u$FtAj%!. ~50!

B. Calculation of the entropy production

Equation~50! gives the expression of the entropy produ
tion as the difference between the entropy with respect to
original partition into setsAj and the entropy with respect t
a partition into sets that are the imagesFtAj of setsAj after
time t. We notice that each setFtAj belongs to a single uni
cell MlW by a previous assumption. Moreover, since the p
tition is invariant under translation from cell to cell, the pa
tition $FtAj% is identical to the partition$ftAj% obtained by
using the flow on the torus.

Written out in full, this entropy production is

D i
tS~MlW!52 (

Aj ,MlW
m t~Aj !ln

m t~Aj !

n~Aj !

1 (
ftAj ,MlW

m t~ftAj !ln
m t~ftAj !

n~Aj !
, ~51!
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where we have usedn(ftAj )5n(Aj ). Next, we expand in
powers of the deviations of the measures from their equi
rium values and find

D i
tS~MlW!5

1

2 (
ftAj ,MlW

@dm t~ftAj !#
2

n~Aj !

2
1

2 (
Aj ,MlW

@dm t~Aj !#
2

n~Aj !
1O~dm t

3!. ~52!

We now use the explicit forms for the measuresdm t(A)
given by the second term on the right-hand side of Eq.~26!.
After some algebra and the use of the conservation of m
sures, as well as the summation formulas~41! and ~42!, we
find that the right-hand side of Eq.~52! becomes

D i
tS~MlW!5

1

2

1

uBu2
E

B
dkW1FkW1

E
B
dkW2FkW2

ei lW•(kW11kW2)

3C~kW1 ,t !C~kW2 ,t !

3 e(sk1
1sk2

)t(
j

1

n~Aj !
kW1kW2 :@TW ~Aj !TW ~Aj !

2TW ~ftAj !TW ~ftAj !#. ~53!

Here, the summation is over the setsAj , that form a partition
of the unit cellMlW . Now we use the identity~33! and the
sum rule~44! to obtain our central result:

D i
tS~MlW!52Dt

n~M!

uBu2
E

B
dkW1FkW1

E
B
dkW2FkW2

kW1•kW2

3ei lW•(kW11kW2)C~kW1 ,t !C~kW2 ,t !e(sk1
1sk2

)t

.Dt
1

neq
F ]n~ lW,t !

] lW
G 2

, ~54!

since the tracer density is expressed according to Eq.~16!
andneq5n(M).

Here we have used the isotropy of the motion in order
eliminate correlations between the displacements in ortho
nal directions. This results in the factorkW1•kW2 appearing in
the integrand in Eq.~54!. We have also implied a scalin
limit in order to write the last line of this equation.

VI. CONCLUSIONS

In this paper, the irreversible entropy production has be
derived from statistical mechanics for a process of diffus
in periodic, deterministic dynamical systems. The derivat
starts from Gibbs’ coarse-grained entropy, and assumes
the system is spatially periodic, and that the dynamics sa
fies Liouville’s theorem, is chaotic, and mixing. We chose
coarse-graining partition of phase space that has the prop
that any two trajectories starting in the same set of the p
tition will remain close together over some specified tim
interval. The central quantities appearing in our derivat
0-7
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are the hydrodynamic measures. They define, at the mi
scopic level, the hydrodynamic modes of diffusion, whi
are exponentially damped at a rate given by the van H
dispersion relation for diffusion. These hydrodynamic me
sures describe the approach to the thermodynamic equ
rium under the diffusion process. In deterministic system
the hydrodynamic measures turn out to be singular. Inde
the quantityTW (A) is a measure describing a nonequilibriu
stationary state corresponding to a gradient of concentra
across the system and, in the multi-baker, the cumula
function of this measure is known to be the continuous
nondifferentiable Takagi function@17#. On the other hand, i
has been shown elsewhere that the hydrodynamic meas
are singular in periodic Lorentz gases@19#. It should be em-
phasized here that the hyperbolicity of the system is use
argue that the time-dependent hydrodynamic measures
fined by Eq. ~20!, approach their asymptotic forms, wit
variations on arbitrarily fines scales in phase space, on t
scales determined by the positive Lyapunov expone
which are very short compared to the time scales neces
for the relaxation of the density distribution to equilibrium
Of course, not all systems with macroscopic diffusion an
positive rate of entropy production are chaotic, e.g., win
tree models with nonoverlapping trees@20#. In such systems
the mechanism responsible for positive entropy productio
expected to develop on algebraic rather than expone
time scales, as is the case for chaotic systems.

Moreover, if the hydrodynamic measures were regu
expression~54! for the entropy production would vanish, a
shown in the case of the multi-baker map@4,7#. Accordingly,
the singular character of the hydrodynamic measures p
an essential role in the positiveness of the entropy produc
expected from irreversible thermodynamics. A further po
we want to emphasize is that the present derivation natur
leads to a positive entropy production in agreement with
second law of thermodynamics. Finally, we point out that o
derivation of the expression given by irreversible thermo
namics for the rate of entropy production applies not only
Lorentz gases, but also to tracer diffusion taking place i
spatially periodicN particle system, where the mechanis
for tracer diffusion is provided by the particles interacti
with each other. Without this interaction, the motion of t
tracer particle would be ballistic, and the mean square
placement would grow quadratically with time.

The next step to be taken in the development of this
proach to the theory of entropy production in the relaxat
of fluid systems to thermal equilibrium is to generalize t
method given here, for tracer diffusion in a periodicN par-
ticle system, to viscous and heat flows. We shall report on
derivation of entropy production for these other transp
processes in future publications. Finally, one would like
s

n
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remove the restriction to periodic systems, and to cons
the entropy production for a general, isolatedN particle sys-
tem relaxing to thermal equilibrium. This remains open f
future work.

It is necessary to mention that our approach to entro
production in fluids has been criticized by Rondoni and C
hen in a series of papers@21#. This is not the place to provide
a detailed response to their criticisms, which we will do
separate publications. However, it is appropriate here
mention two issues that are of some importance for our
sponse to their comments.~1! Rondoni and Cohen find i
troublesome that the time needed for our method to be
plicable depends on the nature of the partition chosen for
calculation of the relative entropy and its change with tim
While this observation is indeed correct, the consequen
are not problematic. The essential point to note is that
order for a nonzero rate of irreversible entropy production
result from our method, we require a partition that is coar
than the scale of variation of the nonequilibrium distributi
function. As we have tried to make clear, the nonequilibriu
distribution function develops a fractal structure on a tim
scale set by the magnitude of the largest positive Lyapu
exponent. For the systems described here, this is a time s
that is very short compared to the time scale over which
system relaxes to equilibrium. In fact, this time scale is
the order of the mean free time between collisions, a sc
sufficiently short that more traditional methods for comp
ing the rate of entropy production, based upon the Bo
mann equation, for example, also do not apply.~2! Rondoni
and Cohen have also objected to our use of multi-baker m
and Lorentz gases as examples of systems to which none
librium thermodynamics might be applied. While one mig
object to their view of the utility of simple model systems f
the development of physical intuition, our calculation of t
rate of entropy production for tracer diffusion in anN par-
ticle system shows that the method can be applied to m
more general systems than multi-baker maps and Lore
gases. Our future work will be devoted to seeing exactly h
general this method might be.
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